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Abstract
Analyses of electro- and magnetoencephalography (EEG, MEG) data often involve a linear

modification of signals at the sensor level. Examples include re-referencing of the EEG,

computation of synthetic gradiometer in MEG, or the removal of artifactual independent

components to clean EEG and MEG data. A question of practical relevance is, if such modi-

fications must be accounted for by adapting the physical forward model (leadfield) before

subsequent source analysis. Here, we show that two scenarios need to be differentiated. In

the first scenario, which corresponds to re-referencing the EEG and synthetic gradiometer

computation in MEG, the leadfield must be adapted before source analysis. In the second

scenario, which corresponds to removing artifactual components to ‘clean’ the data, the

leadfield must not be changed. We demonstrate and discuss the consequences of wrongly

modifying the leadfield in the latter case for an example. Future EEG and MEG studies em-

ploying source analyses should carefully consider whether and, if so, how the leadfield

must be modified as explicated here.

Introduction
Analyses of EEG and MEG data often comprise two successive analysis steps. The first step
involves linear transformations of the data at the sensor level. These transformations include
re-referencing the EEG [1] or computing synthetic gradiometers in MEG [2], and cleaning pro-
cedures that aim to remove artifactual signal components from the data. Commonly indepen-
dent component analysis (ICA) [3–6] is used for artifact cleaning [7–13]. In a second step,
source analysis is applied to estimate the neuronal sources underlying the measured electrical
potentials or magnetic fields [14]. The starting point for source analysis is the physical forward
model, or ‘leadfield’, that describes the relation between electrical sources and sensors. A linear
transformation of the sensor-level data before source analysis raises the question whether and,
if so, how such linear transformation needs to be taken into account for source analysis. In par-
ticular, the question is, if the leadfield must be adapted to account for the altered representation
of the data. This topic has been addressed for specific cases including signal space projection of
MEG data [15] and computing the surface Laplacian of EEG data [16], or may be considered
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well-known for the case of EEG re-referencing [1,14,17]. However, a systematic and general
consideration of this problem and practical guidelines are missing. Here we fill this gap.

Material and Methods

Participants, stimulus, and task
The third part of this paper presents a re-analysis of EEG data reported previously [8,18]. The
study was conducted in accordance with the Declaration of Helsinki, approved by the local eth-
ics committee (Ethics-Committee of the Medical Association of Hamburg), and written in-
formed consent was obtained from all subjects prior to the recordings. Subjects (n = 20) fixated
a central cross while two moving bars approached each other, overlapped, and diverged again
(onset at 0 s, total duration, 1.52 s, size of bars 5° x 0.125° visual angle, starting position at 3.8°
eccentricity, velocity: 5°/sec). A click-sound (duration: 20 ms, volume: 60 dB SPL) was played
at the moment of bar overlap via a central loudspeaker. Subjects reported their percept of the
stimulation (bouncing or passing bars) via button-press (left and right thumb) after fixation-
cross offset on each for 500 trials.

Data acquisition and preprocessing
We recorded the EEG from 126 scalp sites (sampling rate: 1000 Hz; high-pass: 0.01 Hz; low-
pass: 250 Hz; Amplifier: BrainAmp, BrainProducts, Munich, Germany; Ag/AgCl ring elec-
trodes mounted on an elastic cap, Falk Minow Services, Herrsching, Germany; nose reference).
Electrode impedances were kept below 20 kO. Offline, the data were re-referenced to average
reference, high-pass filtered at 4 Hz, and cut into trials of 2.5 s duration centered on the presen-
tation of the sound. Trials with eye movements, eye blinks, or strong muscle activity were iden-
tified by visual inspection and rejected from further analysis. We employed independent
component analysis (FastICA) [5] to remove artifactual signal components [8–13,19].

Spectral analysis
We performed spectral analysis at 70 Hz in a sliding-window (250 ms window length; 19 time
points from -0.14 to 1.66 s in 100 ms steps; tapers: discrete prolate spheroidal (slepian) se-
quences [20,21] using 12 tapers, corresponding to 1 octave spectral smoothing). The spectral
estimate at -0.14 s served as the pre-stimulus baseline. For illustration the power time-courses
were interpolated (shape-preserving piecewise cubic interpolation).

Source analysis
We used adaptive linear spatial filtering (‘beamforming’) [22,23] to estimate the spectral power
of neural population signals at the cortical source level. In short, for each time, frequency, and
source location, 3 orthogonal filters (one for each spatial dimension) were computed that pass
activity from the location of interest with unit gain, while maximally suppressing all other
sources. The filters were computed separately for each point in time and frequency based on
the real part of the cross-spectral density matrix of the data after subtraction of the event-
related potential from each single trial. We linearly combined the 3 filters to a single filter in
the direction of maximum variance.

We reconstructed neuronal activity from 8 locations in the visual cortex (center MNI coor-
dinate: [0–87 26], maximal distance from center: 21 mm, see Fig. 1) and averaged the power
time-courses for illustration in Fig. 1. To derive the leadfield (physical forward model), we con-
structed a 3-compartment boundary element head-model from the segmented SPM99/2 tem-
plate brain (skin; skull; brain including white matter, gray matter and cerebral spinal fluid;
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conductivities: 0.33, 0.041, 0.33 S/m, respectively) and co-registered average electrode posi-
tions. Finally, we transformed this generic head-model into the subjects’ individual head-space
based on individual T1-weigthted structural magnetic resonance images (MRI) to derive indi-
vidual leadfields. Head-model and leadfield construction was performed using Fieldtrip [24]
and SPM (http://www.fil.ion.ucl.ac.uk/spm/).

Results
The results are organized into 3 sections. First, we give an intuitive explanation of why the lead-
field must be changed for re-referencing procedures and synthetic gradiometers, but must not
be changed for cleaning procedures such as ICA cleaning. Then, we provide a formal explana-
tion and detail how to account for changes of the sensor level data in the leadfield when neces-
sary. Finally, we test and discuss in a real-world example what happens, if, following ICA
cleaning of EEG data, the leadfield is corrected by mistake for source analysis.

1. Intuitive explanation
The leadfield is a physical model of the signal that would be measured by the sensors for a unit
dipole with known location and orientation. In the case of re-referencing the EEG or comput-
ing synthetic gradiometer in MEG, the data is linearly transformed into a new set of signals re-
flecting measurements from a new set of virtual sensors. Consequently, the leadfields for the
new representation of the data must be adapted [14]. In contrast, in the case of ICA cleaning,
the physical meaning of the signals and the corresponding sensors is not changed, but rather a
part of the signal is removed that was identified as an artifactual non-brain signal. Consequent-
ly, in this case, the leadfield must not be changed.

2. Formal description
Linear transformations of sensor level data. The first step in EEG or MEG analyses often

involves linear transformations of the sensor level data of the general form:

~X ¼ WX ð1Þ

Fig 1. Effect of wrongly correcting the leadfield for source analysis following ICA cleaning. Time
courses of source-level gamma band activity (50–100 Hz) in response to a moving visual stimulus (onset:
t = 0 s; offset: t = 1.52 s) in an occipito-parietal region of interest (see top right). Plain: No ICA-based artifact
cleaning. ICA clean: Artifactual ICA components are removed from the sensor level data. Mod. Lf.: As for ICA
clean but additionally the leadfield was modified by mistake.

doi:10.1371/journal.pone.0121048.g001
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Where X and ~X are matrices (channels x time points) representing the measured and trans-
formed data, respectively, andW is the transformation matrix. The exact form ofW depends
on the linear transformation employed. Two common cases that we discuss next are re-
referencing and ICA-based artifact cleaning.

Re-referencing. For re-referencing,W is the difference of the identity and a reference de-
fining matrix R.

Wref ¼ I � R ð2Þ

R typically derives the average of all sensors (all elements are set to the reciprocal number of
sensors) or selects a specific sensor (one column of ones). Similarly, transformation matrices
W can be derived for related operations, such as e.g. computing the surface Laplacian of EEG
data [1,16] or computing synthetic gradiometers in MEG [2].

ICA-based artifact cleaning. To derive the linear transformation matrixW for the case of
ICA cleaning, we start with the ICA model and express the data as a weighted set of indepen-
dent components Y (component x time points) realized by a mixing matrix A (channels x com-
ponents) [5]:

X ¼ AY ð3Þ

In many real-world applications A and Y are unknown and are estimated from the data using
e.g. independent component analysis (ICA) [3–6]. If the signals in X are independent, A is full
rank, then A-1 exists and Y can be derived as:

Y ¼ A�1X ð4Þ

Removing artifactual components from the dataset can then be formalized as a multiplication
of A with Imod, where Imod is a modified identity matrix that contains zeros for diagonal ele-
ments corresponding to the artifactual components to be removed:

~X ¼ AImodY ð5Þ

Substituting (4) in (5) yields:

~X ¼ AImodA
�1X ð6Þ

in analogy to (1) we can thus defineWica as:

Wica ¼ AImodA
�1 ð7Þ

Similarly transformation matricesW can be derived for other approaches to decompose the
data into artifactual and neurophysiological components, such as e.g. signal-space projection
(SSP) [25,26], spatio-spectral decomposition (SSD) [27], signal space separation (SSS) [28],
second order blind identification (SOBI) [29], blind source separation based on canonical cor-
relation analysis (BSS-CCA) [30], and principal component analysis (PCA) [31,32].

Source analysis. Following linear transformations of the sensor level data, source analysis
is a common analysis step. This raises the question if, for the source analysis, the previous mod-
ification of the data needs to be accounted for in the leadfield. The starting point of any source
analysis is the following relation:

X ¼ LQ ð8Þ

Where Q is a matrix with source activity of various neuronal and artifactual sources over time
(sources x time points) and L is a matrix with the physical forward models (leadfields) that
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describe the relation between neuronal and artifactual sources and the measured sensor signals
(channels x sources). In general, the number of sources is arbitrarily high reflecting a continu-
ous source distribution. It should be noted that, for other cases than the general considerations
here, neuronal and artifactual data are often represented in separate terms of the equation.

Source analysis following linear sensor level transformations. Applying a linear trans-
formation to the sensor level data (e.g. re-referencing or ICA cleaning, as described above) cor-
responds to a multiplication of (8) with the linear transformation matrixW from the left side,
which yields:

~X ¼ WX ¼ WLQ ð9Þ

For source analysis, we have to express the three-factor product in (9) as a two-factor product.
There are two possibilities. Either the matrixW can be joined with the leadfield L:

~X ¼ ~LQ; with ~L ¼ WL being the modified leadfield ð10Þ

orW can be joined with the source activity Q:

~X ¼ L~Q; with ~Q ¼ L�1WLQ being the modified source activity ð11Þ

Unlike the modified leadfield ~L, the modified source activity ~Q cannot be explicated algebraical-
ly unless strict constraints are imposed on L (L is normally rank deficient and thus constraints
have to be imposed to find L-1, such as e.g. L-1 is a matrix with the property L-1�L = I, without
requiring that L�L-1 = I, where I is the identity matrix). However, the fact that L-1 is practically
difficult or even impossible to derive does not hinder the interpretation of the two alternatives:

From (10) and (11), it is evident that ~X can be expressed as the product of the unmodified

leadfield L and modified sources ~Q or as the product of a modified leadfield ~L and the original
sources Q. Both alternatives are formally correct. To choose between the two alternatives, we
need to consider their physical meaning and ask which sources we are aiming for. If we aim for
the original sources Q, we need to work with (10) and employ a modified leadfield that com-
pensates for the changes in the representation of the sensor level data. This is e.g. the case for
re-referencing. However, the scenario is different for ICA-based cleaning. In this case, the aim

is not to estimate the original Q, but to estimate a modified ~Q, i.e. Q without the artifactual
sources. Thus, in this case, we need to work with (11), i.e. with the unmodified leadfield L.

In the following we formally show that both alternatives indeed yield the desired
source activity.

To derive Q from (10) we need to solve the inverse problem given the modified data ~X and

the modified leadfield ~L. This is the very problem of source analysis, which is in general diffi-
cult to solve [14]. However, if successful, the original source distribution Q is recovered as
aimed for in the first scenario.

The matter is more complicated for the second scenario. Using source analysis with the

modified data ~X and the original leadfield L results in ~Q. But is ~Q the desired source activity?
Substituting (7) in (11) yields:

~Q ¼ L�1AImodA
�1LQ ð12Þ

Then, substituting (8) and (4) in (12) yields:

~Q ¼ L�1AImodY ð13Þ

S = L-1A can be conceptualized as a matrix with the source distributions of the independent
components (sources x components). Again, the inverse of L, i.e. L-1, is in general difficult to
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find, but this does not hinder the interpretation. Substituting this definition into (13) yields:

~Q ¼ SImodY ð14Þ

From this, we can explicitly see that, as intended, ~Q consists of all but the sources of the artifac-
tual components that are removed by zeroing the corresponding diagonal elements in Imod.

3. Effect of correcting the leadfield by mistake
We showed that the leadfield must not be corrected if linear transforms are applied for ICA-
based artifact cleaning. But, what are the consequences if this is done by mistake? This question
is important not only to judge the practical relevance of the present considerations for future
studies, but also to assess previous studies that have applied a correction by mistake.

Wrongly correcting the leadfield, corresponds to applying (10) instead of (11). In other

words, we do not consider the cleaned data ~X to be due to cleaned sources, but due to the origi-
nal sources—including the artifact—measured with modified sensors described by modified

leadfields ~L that are insensitive to the artifactual sources. What happens in detail if source-
analysis is performed using this wrongly modified leadfield depends on the degree of artifact
cleaning (i.e. number of removed components / variance) and the specific source analysis
method applied. Nevertheless, the following considerations provide general insights.

Consider why we apply artifact cleaning before source analysis in the first place. The reason
is that the artifactual sources ‘overlap’ with neuronal activity of interest. That is, artifactual
sources and sources of interest share spatial characteristics that prevent a full separation at the
source level. Removing artifactual components from the data thus increases the signal to noise
ratio of the neuronal sources of interest.

This overlap between artifactual and neuronal sources of interest also determines the effect
of modifying the leadfield by mistake. Measuring with a set of virtual sensors that are blind to
the artifactual sources translates into a reduced sensitivity also for neuronal sources of interest
that have a high overlap with the artifactual sources. Thus, the signal-to-noise ratio that is in-
creased by removing artifactual sources from the dataset is subsequently reduced again by
wrongly modifying the leadfield for source analysis. In other words, modifying the leadfield by
mistake will counteract artifact cleaning.

To test this hypothesized effect of wrongly correcting the leadfield, we investigated the im-
pact of removing muscular artifacts using ICA on analyzing visually induced gamma-band ac-
tivity at the cortical source level. Neck muscle activity spatially and spectrally overlaps with
neuronal gamma band activity [8,33–36]. Thus, visual gamma band activity provides a good
test for the hypothesized effect of wrongly correcting the leadfield. We analyzed EEG data of 20
healthy subjects performing a perceptual decision task on a visual stimulus consisting of two
high-contrast moving bars (see Material and Methods). We employed ICA to remove artifactu-
al muscle components (number of rejected components: 38 ± 10.5, mean ± SD; 16–250 Hz
band) and used beamforming to investigate neuronal activity resolved in time and frequency at
sources within the visual cortex.

In accordance with previous reports [8,18,36–38], visual stimulation induced an increase of
gamma power relative to pre-stimulus baseline in visual cortex (Fig. 1, blue line; two-sided
t-test, p = 7.67 � 10-5, interval: 0.25–1.25 s). Removing artifactual ICA components that cap-
tured muscle activity significantly increased this gamma band response (Fig. 1, green line; two-
sided t-test for ICA-cleaned response vs. non-cleaned response, p = 0.027, interval: 0.25–1.25
s). In other words, if we consider the gamma-band response as the ‘signal’ relative to the back-
ground ‘noise’, the ICA cleaning procedure increased the signal-to-noise ratio. This is because
the gamma-band activity reconstructed in visual cortex did not only reflect the neuronal
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activity of interest, but, because of the proximity of neck muscles, also reflected artifactual
muscle activity.

Next, we investigated the effect of wrongly modifying the leadfield before source analysis.
Indeed, this led to a significant decrease of the visual gamma band response that even signifi-
cantly dropped below the response for the raw data (Fig. 1, red line; two-sided t-tests for
leadfield-corrected ICA cleaned response vs. non-cleaned and ICA-cleaned responses, both
p< 4 � 10-4, interval: 0.25–1.25 s). Thus, this example accords well with the hypothesis that
wrongly modifying the leadfield decreases the signal-to-noise ratio counteracting the benefit of
ICA cleaning.

Discussion
We showed that, depending on the physical meaning of the linear transformation applied to
sensor level data, the leadfield must or must not be adapted before subsequent source analysis.
For linear transformations that are applied to change the sensor level representation of the
data, but not to remove sources from the measured data, the leadfield must be adapted. In con-
trast, for linear transformations that remove artifactual sources from the data, the leadfield
must not be adapted.

We discussed ICA-based cleaning as an example for transformations that do not require a
leadfield adaptation. However, the above arguments generally also hold for other approaches
employed for artifact cleaning including signal-space projection (SSP) [25,26], spatio-spectral
decomposition (SSD) [27], signal space separation (SSS) [28], second order blind identification
(SOBI) [29], blind source separation base on canonical correlation analysis (BSS-CCA) [30],
and principal component analysis (PCA) [31,32]. Furthermore, the above considerations also
hold if, instead of removing artifactual components, only a few or one signal component of in-
terest is selected for further analysis.

In our considerations, we assumed that artifactual ICA components captured only artifactu-
al signals. In real-world applications this may not be the case. Artifactual components may also
capture some neuronal activity that is then removed along with the artifact. This false removal
of the signal of interest will naturally affect source analysis counteracting the improved SNR
gained by removing artifacts, and may lead to miss-localization of neuronal activity. The specif-
ic consequence of such false removal of neuronal signal depends on the specific case and on the
source analysis technique applied. However, in general, the problem will increase with the ratio
of removed neuronal signal to removed artifactual signal. This advocates for a conservative ap-
proach when declaring components as artifactual. E.g. in an event related experimental design,
one may demand that components declared as artifactual do not show any trask-related modu-
lations. The problem of removing neuronal data, may be particularly relevant for signal-space
projection (SSP) [25,26]. In signal space projection the data is projected away from a known ar-
tifact topography, while not specifically aiming a separation of neuronal and artifactual signals
that would counteract removal of the signals of interest. Depending on the similarity of the ar-
tifact and neuronal topographies this can lead to severe distortions of subsequent source esti-
mates [15]. Thus for source analysis following artifact cleaning using signal-space projection
particular care is advised.

The provided framework also applies to scenarios, in which multiple linear transformations
are applied in succession. For example, if ICA-based cleaning is followed by re-referencing at
the sensor level, the leadfield must be adapted for the second, but not for the
first transformation.

The effect of modifying the leadfield by mistake is of practical relevance to evaluate previous
studies. While this effect depends on the relation of the applied modification to the sources of
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interest and the specific source analysis method employed, our considerations provide general
insights that we verified in a real-world example. In short, wrongly modifying the leadfield will
counteract the benefits of ICA cleaning. In the discussed example, this effect was so strong that
ICA cleaning with a wrongly modified leadfield even resulted in a worse signal-to-noise ratio
than no ICA cleaning at all. This loss in sensitivity should be considered when interpreting
previous studies.

In general, future studies should carefully consider whether and, if so, how the leadfield
must be changed for source analyses following linear transforms of the data.
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