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Abstract

Synchronized neuronal population activity in the gamma-frequency range (>30 Hz) correlates with the bottom-up drive of
various visual features. It has been hypothesized that gamma-band synchronization enhances the gain of neuronal
representations, yet evidence remains sparse. We tested a critical prediction of the gain hypothesis, which is that features
that drive synchronized gamma-band activity interact super-linearly. To test this prediction, we employed whole-head
magnetencephalography in human subjects and investigated if the strength of visual motion (motion coherence) and
luminance contrast interact in driving gamma-band activity in visual cortex. We found that gamma-band activity
(64–128 Hz) monotonically increased with coherence and contrast, while lower frequency activity (8–32 Hz) decreased with
both features. Furthermore, as predicted for a gain mechanism, we found a multiplicative interaction between motion
coherence and contrast in their joint drive of gamma-band activity. The lower frequency activity did not show such an
interaction. Our findings provide evidence that gamma-band activity acts as a cortical gain mechanism that nonlinearly
combines the bottom-up drive of different visual features.
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Introduction
Synchronized neuronal population activity in the gamma-
frequency range (>30 Hz), that is, gamma-band activity, is a
hallmark of feed-forward visual processing (Donner and Siegel
2011; Vinck et al. 2013; van Kerkoerle et al. 2014; Fries 2015). It is
robustly driven by sensory stimulation and varies with several
parameters of visual stimuli such as stimulus size (Gieselmann
and Thiele 2008; Perry et al. 2013; Vinck and Bosman 2016),
luminance contrast (Hall et al. 2005; Henrie and Shapley 2005;
Niessing 2005; Ray and Maunsell 2010b; Hadjipapas et al. 2015;
Perry et al. 2015), stimulus orientation (Friedman-Hill 2000;

Siegel and König 2003; Koelewijn et al. 2011), and visual motion
(Liu and Newsome 2006; Siegel et al. 2007; Muthukumaraswamy
and Singh 2013). Gamma-band activity increases monotonically
with visual motion coherence (Siegel et al. 2007) and increases
approximately linearly with luminance contrast (Hall et al. 2005;
Henrie and Shapley 2005; Niessing 2005; Ray and Maunsell
2010b; Hadjipapas et al. 2015; Perry et al. 2015). Gamma-band
activity is also related to cognitive processes. It correlates
with selective visual attention (Fries 2001; Siegel et al. 2008)
and predicts visual discrimination performance (Siegel et al.
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2008) as well as reaction times during sensory discrimination
(Womelsdorf et al. 2006; Rohenkohl et al. 2018).

Gamma-band activity may act as a cortical gain mechanism.
Synchronized spikes have a super-additive impact on down-
stream neurons (MacLeod et al. 1998; Salinas and Sejnowski
2001; Azouz and Gray 2003; Laughlin and Sejnowski 2003; Fries
2009; Donner and Siegel 2011). This impact may be further
enhanced by the alignment of rhythmic spiking to the phase
of postsynaptic excitability fluctuations (Fries 2005; Siegel et al.
2008). Thus, synchronized gamma-band activity may increase
the impact, that is, gain, of neuronal representations (König et al.
1996; Salinas and Sejnowski 2001; Fries et al. 2007; Donner and
Siegel 2011; Fries 2015).

A critical prediction of this cortical gain hypothesis is that
a combination of visual features that drive gamma-band activ-
ity should result in a super-linear (e.g., multiplicative) interac-
tion, rather than a mere additive effect of these features on
gamma-band activity. We tested this prediction recording mag-
netencephalography (MEG) in human participants that viewed
dynamic random-dot motion patterns with varying luminance
contrast and motion coherence. We found that, in addition to a
linear drive of gamma activity through coherence and contrast,
these stimulus features indeed showed a multiplicative inter-
action. Modulations of gamma-band activity were localized to
visual cortex and accompanied by a more widespread modula-
tion of lower frequency activity (8–32 Hz) that did not show an
interaction between stimulus features. Our results provide novel
evidence that gamma-band activity reflects a bottom-up driven
cortical gain mechanism.

Material and Methods
Participants

Nineteen subjects (5 male; mean ± SD age, 26.2 ± 3.2 years; age
range, 21–35 years) participated in the experiment and received
monetary compensation for their participation. The study was
conducted in accordance with the Declaration of Helsinki and
approved by the local ethics committee, and informed con-
sent was obtained from all subjects prior to the recordings. All
subjects were in good health and had normal or corrected-to-
normal vision.

Stimuli and Behavioral Task

The stimuli consisted of dynamic random-dot patterns with
bright dots on a black background (Fig. 1). During the entire
experiment, subjects sat in the MEG in upright position. For
every trial, they first saw a blank black screen with a fixation
cross in the center (Fig. 1A). After 500 ms, a dynamic random-
dot stimulus appeared on either the left or the right side of
the fixation cross (10◦ eccentricity, 12◦ stimulus diameter). After
1000 ms, the stimulus disappeared. After a variable delay (300–
600 ms), a Go cue was given through a brief dimming of the
fixation cross (1 frame, ∼16 ms). The participants then pressed
one of two buttons to indicate whether they saw an upward or
downward stimulus motion.

The stimuli had varying features with three levels of motion
coherence (12%, 56%, and 100%; Fig. 1B) and three levels of
luminance contrast (Weber contrast levels: 20%, 60%, and 100%).
The varying coherence was induced using random direction
noise with the “same” rule (Scase et al. 1996) (12◦ stimulus
diameter, 1000 dots, 10 deg/s dot speed, 0.1◦ dot radius). Thus,

Figure 1. Experimental paradigm and stimulus space. (A) On each trial, subjects
fixated a small central fixation cross. Following a blank baseline (>500 ms),

a dynamic random-dot stimulus appeared either on left or right side and
disappeared again after 1000 ms. After a variable delay (300–600 ms), the fixation
cross disappeared as a go cue for the response. Subjects reported the perceived
motion direction (up vs. down) with a button press (left vs. right hand). (B) Stimuli

varied in motion coherence (12%, 56%, and 100%) and luminance contrast (20%,
60% and 100%).

a fraction of “signal dots” moved all in the same signal direction
(upward or downward movement) during the entire stimulus
presentation, while another fraction of “noise dots” moved in
random directions. We manipulated the contrast of the stimuli
by increasing dot brightness against a constant luminance back-
ground. The task factors motion direction (upward vs. down-
ward), presentation side (left vs. right), coherence level, and con-
trast level were counter-balanced and randomly varied across
trials during every experiment. The stimulus–response mapping
(button press with the left vs. right hand to indicate upward vs.
downward motion, respectively) was counter-balanced across
subjects.

Sixteen subjects participated in the full experiment of 900
trials: one subject stopped after 283 trials, one subject stopped
after 798 trials, and one subject after 894 trials. This study
focused on neuronal correlates of visual stimulus features rather
than of behavior. Thus, the behavioral task was designed such
that, except for the lowest motion coherence, the subjects’ per-
formance was nearly perfect: 12% coherence: 62% (±9% SD) cor-
rect performance; 56% coherence: 92% (±7% SD) correct perfor-
mance; and 100% coherence: 98% (±2% SD) correct performance.
Likewise, the median reaction time showed a ceiling effect for
higher coherence levels: 12% coherence: 522 ms (±328 ms SD);
56% coherence: 457 ms (±281 ms SD); and 100% coherence:
453 ms (±276 ms SD).
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Data Acquisition and Preprocessing

MEG was continuously recorded using a 275-channel whole-
head system (Omega 2000, CTF Systems Inc.) in a magnetically
shielded room. The head position relative to the sensors was
measured using three head localization coils (nasion, left/right
pre-auricular points). Electroencephalography (EEG) recordings
were performed in parallel to the MEG recordings. The EEG data
are not presented here. The MEG signals were recorded with a
sampling rate of 2483.8 Hz.

All analyses were performed in Matlab (MathWorks) using
custom code and the open source toolboxes Fieldtrip (Oost-
enveld et al. 2011) and SPM12 (http://www.fil.ion.ucl.ac.uk/
spm). Off-line, the data were high-pass filtered with a cut-off
frequency of 1 Hz and down-sampled to 500 Hz. Line noise
was removed by applying band-stop filters at 50, 100, 150, 200,
and 250 Hz with cut-offs at 1 Hz (all fourth-order zero-phase
Butterworth filters). Trials containing jumps and channels that
were affected from flux trapping due to the simultaneous EEG–
MEG recordings were excluded from the analysis. We conducted
an independent component analysis (FAST ICA; Hyvärinen
and Oja 2000) to further clean the data from eye blink, eye
movement, muscular, and pulse artefacts. We inspected the
first 100 components of each subject visually according to their
topology, time courses, and spectra. Components that could
be clearly detected as artefacts were subtracted from the data
before further analysis (mean: 4.7; SD: 4.1 components per
subject).

During the MEG recordings, we performed noncontact
infrared-based eye-tracking in 18 out of 19 subjects.

Spectral Analyses

All spectral analyses were performed using Morlet’s wavelets
(Tallon-Baudry et al. 1996). We computed the time–frequency
representation (TFR) for frequency f of the signal x(t) at time t
with the convolution operation

TFR
(
t, f

) = x(t) ∗ w
(
t, f

)
. (1)

We write w(t, f )for Morlet’s wavelets

w
(
t, f

) = Ae−t2/2σ2
t ei2πft, (2)

where σt is the standard deviation (SD) of the signal in the
time domain and A is a normalization factor. In both time
and frequency domains, Morlet’s wavelets are Gaussian shaped.
σf = f/q is the SD in the frequency domain at frequency f and q is
the width of the wavelet. The SD in the time domain is given by
σt = 1/(2πσf ). We set q = 5 and estimate TFR(t, f ) at frequencies
between 8 and 256 Hz, logarithmically scaled in quarter octave
steps. Finally, we subsampled TFR(t, f ) in the time-domain with
a step-size of 20 ms.

Source Localization

We projected the frequency-decomposed MEG data to pre-
defined source locations using adaptive linear spatial filters
(Beamforming; Van Veen et al. 1997; Gross et al. 2001). To account
for different head anatomy, we constructed a personalized
lead field for each participant. The lead field describes the
signal measured at the sensor-level for an isolated dipole with

fixed current pointing to each of the 3 principle axes (forward
model). The computation of lead fields was based on head
models generated from T1 magnetic resonance imaging (MRI)
data of each subject. First, we segmented the MRI data into
different tissue types: gray and white matter, cerebrospinal
fluid, skull, and skin. Based on the segmented MRI data, we
constructed individual single-shell head models (Nolte 2003)
and subsequently nonlinearly registered a standardized source
model to the individual brain shapes (Hipp et al. 2012). The
source model contained 457 locations that homogeneously
covered the space below the MEG sensors ∼7 mm beneath
the skull. Source coordinates, head model, and MEG channels
were calculated relative to the three head localization coils.
We used DICS beamforming in the frequency domain (Gross
et al. 2001) to project the data from sensor level to source
space. Beamforming renders activity from sources of interest
with unit gain while maximally suppressing contribution
from all other sources. Briefly, for every frequency f , DICS
beamforming uses the sensor-level cross-spectral density
matrix (CSD) and the individual lead fields L to define spatial
filters F

F
(
i, f

) =
[
L
(
i, f

)T CSDreal(f )−1 L
(
i, f

)]−1
L
(
i, f

)T CSDreal(f )−1, (3)

where i denotes sources and CSDreal is the real part of the CSD.
To obtain the 3-by-3 source level CSD (CSDi), we projected the
sensor level CSD through the filter F

CSDi(f ) = real
(
F

(
i, f

)
CSD(f )F

(
i, f

)T
)

. (4)

For every frequency f , we then performed principal com-
ponent analysis (singular value decomposition) on the source
level CSDi(f ) and selected the first principal component that
represents the most dominant dipole orientation. Subsequently,
we projected the Filter F onto the first principal component
and obtained Fpri. Finally, we projected the TFR data from the
sensor level to source level by multiplying them with the filter
Fpri

TFRi
(
t, f

) = Fpri
(
i, f

)
TFR

(
t, f

)
, (5)

where TFRi denotes the time–frequency representation on the
source-level.

Response Normalization

To suppress stimulus-evoked responses phase-locked to stimu-
lus onset, we subtracted the average potential across trials per
condition, subject, time–frequency bin, and source.

To project the data into a consistent relationship between
cortical hemisphere and side of stimulation (left vs. right), we
flipped the responses across the sagittal axis of the brain such
that the left hemisphere of the brain represented activity con-
tralateral to the stimulation and the right hemisphere repre-
sented the activity ipsilateral to the stimulation.

We characterized spectral responses R(f ) as the percentage of
change in signal power at frequency f and time t relative to the
prestimulus baseline
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R(f ) = S(f ) − B(f )
B(f )

∗ 100, (6)

where S(f ) denotes the spectral power in the temporal interval
of interest and B(f ) denotes the spectral power during the
prestimulus baseline (500 ms before up to stimulus onset),
averaged across all trials and conditions. We analyzed the spatial
distribution of power relative to baseline in five frequency
bands, averaged across all subjects, trials, and time bins from 0.1
to 1.1 s poststimulus onset. In particular at later time points, we
observed activity modulations that localized to the motor cortex,
which likely reflected neuronal process related to response
preparation. Motor preparation and a potential decrease of
visual attention during the late stimulus interval may in
particular occur for stimuli with higher motion coherence,
which allow for early response preparation. Thus, to avoid
any potential confounds from such an effect, we restricted all
analyses to the early time window from 0.1 to 0.6 s poststimulus
onset. In order to assess the modulation of neuronal responses
by stimulus conditions (see below), we normalized responses by
the mean across all trials and conditions for each subject, time,
frequency, and source bin. We used cluster-based permutation
statistics to test for significant changes of power relative to
baseline (Fig. 2). We determined cluster sizes of contiguous
differences from zero with identical sign with P < 0.05 (random
effects two-tailed t-test, uncorrected). Before cluster definition,
we applied a neighborhood filtering (filter parameter: 0.5) to
remove spurious bridges between clusters (Hipp et al. 2011).
The analysis was repeated 10 000 times, shuffling the signs of
the effects per subject and taking the maximum cluster size
determined as above for each shuffle. A cluster was determined
to be significant at P < 0.05 when its size exceeded the 95th
percentile of this maximum cluster size distribution (Nichols
and Holmes 2002).

Analysis of Response Modulation

The neuronal response y was modeled as a combination of
predictor variables x1(contrast) and x2 (motion coherence)

y = β0 + β1x1 + β2x2 + β3x1x2 + β4x2
1 + β5x2

2 + β6x2
1x2

2 (7)

with β reflecting the polynomial coefficients. To assess the
amount of variance that each predictor accounted for indepen-
dently, we orthogonalized the regressors prior to model fitting
using QR-decomposition. For the spectrally, temporally, and spa-
tially resolved analyses (Fig. 3), we fitted the response model for
each subject. We then used the same cluster-based permutation
statistics as for the power response to test for significant model
coefficients.

For the analysis of response modulation for fixed spectro-
temporal windows on the population level (Fig. 4), we fitted
one response model to the data of all subjects. We then used
sequential polynomial regression (Büchel et al. 1998; Rees et al.
2000; Siegel et al. 2007) to assess the modulation of responses by
contrast and coherence. Starting with the zero-order (constant)
model and based on F-statistics (Draper and Smith 1998), we
tested whether incrementally adding new predictors improves
the model significantly (P < 0.05). We assessed the confidence
interval (CI) around the respective β-weights by conducting a
bootstrap analysis with 1000 iterations. In each iteration, we
randomly drew a subset of 19 subjects (with repetition) out of

the complete set of 19 subjects and calculated the coefficients
based on this subset. The CIs represent the 2.5th and 97.5th per-
centile of the resulting distribution. We applied leave-one-out
cross-validation across subjects to account for overfitting.

Control Analyses

In a first control analysis, we investigated a potential confound
due to eye movements. We compared the variance of eye move-
ments (0.1 to 0.6 s poststimulus onset) among the three levels
of motion coherence and contrast (pairwise sign-rank test). We
stratified the data to equate eye movements across different
levels of motion coherence and contrast. For each subject, we
randomly left out trials for the lowest and highest contrast
level such that the median of eye movements for these levels
moved closer to the median of eye movements for the mean
contrast level. We repeated this removal until the median eye
movements were equated across contrast levels. We then per-
formed the same stratification procedure for motion-coherence
levels and performed the polynomial regression analysis on the
stratified data.

In a second control analysis, we repeated the polynomial
regression analysis for a larger region of interest that included
most of contralateral visual cortex.

Results
We recorded MEG in human subjects (n = 19) that viewed
dynamic random-dot stimuli with varying luminance contrast
(3 levels) and motion coherence (3 levels; Fig. 1B). After stimulus
presentation (1000 ms) and a variable 300–600 ms delay, the
participants indicated whether they saw an upward or a
downward motion with a button press (Fig. 1A).

We source-reconstructed the MEG data at 457 locations that
homogeneously covered the cerebral cortex about 7 mm below
the skull. In line with previous findings (Hall et al. 2005; Siegel
et al. 2007; Hipp et al. 2011), stimulus presentation increased
gamma-band activity (>64 Hz) compared with the blank fix-
ation baseline in the visual cortex contralateral to the visual
stimulus (Fig. 2A; both P < 0.01, cluster-based permutation). The
robust increase in the gamma band was accompanied by a more
widespread decrease in lower frequency bands (Fig. 2A; all three
frequency bands between 8 and 64 Hz P < 0.01, cluster-based
permutation).

For all further analyses, we averaged responses across the 5%
sources within the strongest gamma-band response, which were
located in contralateral occipital visual cortex (Fig. 2B inset).
Furthermore, we restricted the analysis to the early interval
from 0.1 to 0.6 s poststimulus onset to discount potential con-
founds due to response preparation at later timepoints. Both,
the high-frequency enhancement and low-frequency suppres-
sion in visual cortex started around 0.1 s poststimulus onset
and were then sustained (Fig. 2B; both P < 0.01, cluster-based
permutation).

We next addressed how gamma-band activity varied with
luminance contrast and motion coherence (Fig. 2C). For all 3
levels of motion coherence and contrast, visual stimulation
induced a robust increase of gamma-band activity and
decrease of low-frequency activity (Fig. 2C; all clusters P < 0.05,
cluster-based permutation). Furthermore, gamma-band activity
increased monotonically with both visual features (Fig. 2C). We
next quantitatively assessed these modulations and tested for
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Figure 2. Stimulus-induced responses relative to baseline. (A) Cortical distribution of the power response during stimulation (0.1–1.1 s) in five frequency bands. Brains

are viewed from the back. (B) Power response resolved in time and frequency in occipital cortex contralateral to the visual hemifield of stimulation. The region of interest
is depicted on the upper right. (C) Time–frequency resolved power responses in each stimulus condition. In all panels, statistical significance (P < 0.05 corrected, cluster
permutation) is indicated by color opacity. Same color scale as in (B).

a potential interaction between coherence and contrast using a
model-based approach.

We performed sequential polynomial regression to model
the neuronal response as a linear and quadratic function of
motion coherence and luminance contrast as well as of the
interaction of these linear and quadratic features (Büchel et al.
1998; Rees et al. 2000; Siegel et al. 2007). The fitted model
coefficients reveal the corresponding linear and quadratic mod-
ulations of the neuronal response by coherence and contrast
(Fig. 3A). Importantly, stimulus coherence and contrast were
uncorrelated by design, and all model coefficients were esti-
mated independently using orthogonalized regressors. Thus, the
interaction coefficients reflect multiplicative response modu-
lations that cannot be explained by linear modulations (see
Materials and Methods for further details).

We found that both contrast and motion coherence had a
positive linear effect on visual gamma-band activity (Fig. 3A;
contrast: P < 0.01; coherence: P < 0.0001, cluster-based permu-
tation). These modulations were confined to frequencies from
about 64 to 128 Hz, started shortly after stimulus onset and were
then sustained throughout the stimulation period. In addition

and in agreement with previous results (Gray and Singer 1989;
Siegel and König 2003; Siegel et al. 2007), we observed a linear
decrease of activity with contrast and coherence at lower fre-
quencies from about 8 to 25 Hz (P < 0.05, cluster-based permu-
tation). The contrast effect became significant around 150 ms
after stimulus onset; the coherence effect became significant
after 350 ms after stimulus onset. There was a weak sub-linear
(negative quadratic) modulation of gamma-band activity with
contrast (P < 0.05, cluster-based permutation). In addition and
in line with previous results (Siegel et al. 2007), we observed
a significant supra-linear (quadratic) increase of gamma-band
activity with motion coherence between 32 and 128 Hz (P < 0.001,
cluster-based permutation).

Consistent with our main hypothesis, we also found a robust
multiplicative interaction between coherence and contrast
(P < 0.01, cluster-based permutation, Fig. 3A). This interaction
was confined to the frequency range between 64 and 128 Hz,
became significant around 200 ms after stimulus onset, and
was then sustained. There was no such interaction between
the negative response modulation of coherence and contrast at
lower frequencies.
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Figure 3. First-order (linear) and second-order (quadratic) response modulation by luminance contrast and motion coherence. (A) Results of a sequential polynomial
regression per time–frequency bin, including first- and second-order coefficients and their interactions. Statistical significance (P < 0.05 corrected, cluster permutation)

is indicated by color opacity. Contralateral occipital cortex. (B) Response coefficients as a function of frequency for the time window from 0.1 to 0.6 s paststimulus onset.
Shaded areas represent the 95% confidence intervals. Significant deviations from zero are indicated by the colored bars above the line plots. Contralateral occipital
cortex. (C) Spatial specificity of selected response modulations in the time window from 0.1 to 0.6 s paststimulus onset. Statistical significance (P < 0.05 corrected,
cluster permutation) is indicated by color opacity. See Supplementary Figure 1 for cortical distributions of all factors for all frequency bands.

To further investigate the spectral profile of response modu-
lations through coherence and contrast, we applied the same
stepwise modeling (sequential polynomial regression) to the
stimulus response averaged across time (0.1 to 0.6 s poststim-
ulus onset) at each single frequency (Fig. 3B). In line with the
temporally resolved analysis, this approach revealed robust lin-
ear effects of contrast and motion coherence in the gamma band
and lower frequency ranges as well as quadratic effects of both
visual features in the gamma band (all P < 0.01, cluster-based
permutation). We observed a multiplicative interaction between
coherence and contrast in the gamma band. Furthermore, in
this analysis, we also observed a weak second-order interaction
of contrast and coherence for the gamma band (P < 0.05; multi-
plicative interaction of quadratic coherence and contrast). There
was no significant linear or quadratic interaction of coherence
and contrast for lower frequency ranges.

In which cortical regions do visual contrast and coherence
modulate frequency-specific neuronal population activity?
To answer this question, we repeated the above analyses for

each source location across the entire cortex, for 5 frequency
bands (8–16, 16–32, 32–64, 64–128, and 128–256 Hz) in the
time range of 0.1 to 0.6 s poststimulus and applied a spatial
cluster-permutation statistic (Fig. 3C, 0.1 to 0.6 s poststimulus;
all factors and frequency ranges that are presented show
significant clusters at P < 0.05, cluster-based permutation; see
Supplementary Fig. 1 for all factors and frequency ranges).
Contrast and coherence induced a negative linear modulation
in low frequencies (8–32 Hz) that extended along the dorsal
visual stream peaking in occipitoparietal regions. The linear
gamma-band modulations of contrast and coherence, including
their multiplicative interaction, were more confined and shifted
toward the pole of the occipital cortex.

In a final step, we investigated how well the polynomial
model fit the data. To this end, we repeated the regression
analysis for neuronal responses in five frequency bands (Fig. 4;
0.1 to 0.6 s poststimulus; responses in contralateral visual cortex
as above). Models of all but the middle frequency band (32–64 Hz)
included contrast as a linear predictor (all P < 0.001). Models
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Coherence and Contrast Jointly Drive Gamma Activity Pellegrini et al. 7

Figure 4. Average power response in the time window from 0.1 to 0.6 s in

contralateral occipital cortex and fitted response models as a function of con-
trast, coherence, and frequency band. Dots and error bars indicate the mean
response and the corresponding 95% confidence interval across subjects. Lines
indicate the fitted polynomial response model. Models include the significant

coefficients (P < 0.05) of the sequential polynomial regression for the respective
frequency band. Please note that the fits are displayed in the original nonorthog-
onalized contrast- and coherence-space to enhance readability. Plots were
slightly displaced on the x-axis to avoid data overlap and enhance readability.

between 32 and 128 Hz also included a linear coherence predic-
tor (all P < 0.05). The models between 32 and 128 Hz included
squared coherence (both P < 0.05), and for 64–128 Hz, the model
included quadratic contrast (P < 0.05). Importantly, the linear
interaction of coherence and contrast only improved the model
for 64–128 Hz (P < 0.0001). For this frequency range (64–128 Hz),
the full response model including linear contrast (ß = 0.34, 95%
CI = [0.23,0.45]), linear coherence (ß = 0.36, CI = [0.26,0.47]), their

interaction (ß = 0.16, CI = [0.09,0.22]), as well as quadratic contrast
(ß = −0.08, CI = [−0.13,-0.03]) and quadratic coherence (ß = 0.18,
CI = [0.11,0.25]). We performed a leave-one-out cross-validation
analysis to quantitatively assess the model fit. For 64–128 Hz, the
polynomial model including the linear interaction of coherence
and contrast well fit the neuronal response (R2 = 0.54). Further-
more, in accordance with the stepwise-regression analysis, leav-
ing out the interaction term of the model in the cross-validation
analysis resulted in a reduced model fit (R2 = 0.50).

Different levels of motion coherence or contrast may lead
to different eye movements. Indeed, a control analysis revealed
significantly stronger eye movements (eye position variance,
0.1 to 0.6 s poststimulus onset) for stimuli with higher motion
coherence (100% vs. 56% coherence, P < 0.05, sign-rank test)
and higher contrast (all pairwise comparisons P < 0.001, sign-
rank test). To rule out that these differences in eye movements
confounded our results, we repeated our main analysis after
stratifying the data to equate eye movements across levels of
motion coherence and contrast (trials omitted: 214 mean ± 152
SD across subjects). The results of this control analysis were
very similar to the above findings (Supplementary Fig. 2). Most
importantly, the linear interaction between motion coherence
and contrast for the gamma band (64–128 Hz) was also signifi-
cant for the stratified data (P < 0.0001). We thus concluded that
this interaction was not confounded by eye movements.

In a second control analysis, we investigated if our key results
depended on the particular choice of cortical region of interest.
We repeated the analyses with a larger region of interest includ-
ing most of contralateral visual cortex (Supplementary Fig. 3).
This control analysis yielded largely the same results as the
above analyses that were based on the smaller region of interest.
Most importantly, also for this control analysis revealed a signif-
icant linear interaction between motion coherence and contrast
for the gamma band (64–128 Hz, P < 0.001).

Discussion
Here, we combined MEG, source reconstruction, and parametric
visual stimulation to test a critical prediction of the hypothesis
that visual gamma-band activity acts as a cortical gain
mechanism, which is that features that drive gamma-band
activity interact super-linearly. To this end, we investigated
the joined effect of visual contrast and motion coherence
on gamma-band activity in human visual cortex. We found
wide-spread activity modulations along the visual hierarchy
in response to varying contrast and motion coherence. Low-
frequency activity (8–32 Hz) decreased with coherence and
contrast along the dorsal visual stream but exhibited no
interaction between stimulus features. In contrast, for gamma-
band activity, the driving influences of contrast and coherence
interacted multiplicatively, thus confirming the prediction for
a gain mechanism. Our findings provide a novel evidence for
the notion of gamma-band activity as a signature of local
interactions that is driven through bottom-up sensory features
and that regulates the gain or impact of sensory processing onto
downstream regions (Siegel et al. 2007, 2008, 2012; Fries 2015).

The influence of contrast on neuronal spiking activity in
visual cortex has been studied extensively. Neurons in areas
along the dorsal visual stream exhibit a sigmoidal contrast
response function (Albrecht and Hamilton 1982; Sclar et al. 1990;
Martı́nez-Trujillo and Treue 2002), with different cells saturat-
ing at different contrast levels (Albrecht and Hamilton 1982).
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Gamma-band activity has been reported to increase approx-
imately linearly with contrast in human MEG and EEG (Hall
et al. 2005; Hadjipapas et al. 2015; Perry et al. 2015), while both
linear (Logothetis et al. 2001; Henrie and Shapley 2005) and
saturating (sub-linear; Ray and Maunsell 2010; Hadjipapas et al.
2015) modulations have been observed invasively in monkey
visual cortex. In accordance with these reports, we found that
gamma-band activity increased monotonically with contrast.
Furthermore, we found that the increase of gamma-band activ-
ity with contrast was saturating (sub-linear), which accords well
with recent results in nonhuman primates (Ray and Maunsell
2010b; Hadjipapas et al. 2015). We did not observe an accelerating
portion of a sigmoidal response function as seen in neural
activity or BOLD signals at low contrasts. This could be due to
the relatively high contrast values starting from 20% and due to
the low resolution with only three contrast levels for the present
study.

Previous studies observed a strong relationship between the
peak frequency of gamma-band activity and luminance contrast
using grating stimuli (Ray and Maunsell 2010b; Hadjipapas et al.
2015). We did not observe such a frequency modulation in the
present data (see Fig. 2). This may point to a stimulus specific
origin of contrast-dependent frequency shifts in gamma-band
activity (gratings vs. random-dot motion).

For motion coherence, response curves are also similar
between single unit spiking and gamma-band population
activity. The relationship between the motion coherence
of a dynamic random-dot pattern and a cell’s response is
predominantly linear (Britten et al. 1993; Heuer and Britten
2007). Also gamma-band activity in the human MEG increases
approximately linearly with the motion coherence of dynamic
random-dot patterns, with some subjects showing a quadratic
(supra-linear) response (Siegel et al. 2007). Our results confirm
these findings with both linear and quadratic modulations of
gamma-band activity by motion coherence.

Although the relationship between single stimulus features
and gamma-band activity has been studied extensively, little
is known about the interaction of different stimulus features.
Our results show that two stimulus features that monotonically
increase gamma-band activity (contrast and motion coherence)
interact supra-linearly in human visual cortex. This finding
accords well with another MEG study that investigated the effect
of three different stimulus parameters on gamma-band activ-
ity (full-field vs. quadrant, static vs. motion, circular vs. linear
grating; Muthukumaraswamy and Singh 2013). Gamma activity
exhibited main effects for all three stimulus features and, in
accordance with the present results, also significant positive
interactions among all factors (Muthukumaraswamy and Singh
2013). These and our findings contrast with another recent
fMRI study (Birman and Gardner 2018), which did not find a
significant interaction between motion coherence and contrast
for dynamic random dot patterns.

Local gamma-band activity likely arises from the interplay of
both lateral excitatory interactions and local inhibitory feedback
(Bush and Sejnowski 1996; Kopell et al. 2000; Siegel et al. 2000;
Bartos et al. 2007; Fries et al. 2007; Cardin et al. 2009; Fries
2009; Sohal et al. 2009; Donner and Siegel 2011; Vinck and
Bosman 2016). The increase of gamma-band activity with con-
trast and motion coherence may reflect the enhanced rhythmic
structuring of spiking activity with enhanced recruitment of
these locally recurrent interactions through stronger bottom-
up drive. Furthermore, stronger motion coherence enhances the

spatiotemporal predictability of visual stimuli, which may fur-
ther enhance the recruitment of stimulus specific lateral exci-
tation (Gilbert and Wiesel 1989; Lund et al. 2003) and inhibition
(Coen-Cagli et al. 2015; Vinck and Bosman 2016).

Visual gamma-band activity increases with selective visual
attention (Fries 2001; Siegel et al. 2008) and enhances perceptual
accuracy (Siegel et al. 2008) and response speed (Womelsdorf
et al. 2006). Several factors may contribute to these behavioral
effects. On the one hand, local gamma-band activity may
rhythmically modulate and enhance the information content
of neuronal spiking (Siegel et al. 2009; Womelsdorf et al. 2012;
Vinck and Bosman 2016). On the other hand, local gamma-band
activity may enhance the impact or gain of spiking activity
on subsequent processing stages by two distinct mechanisms.
First, the temporal synchronization of presynaptic spikes likely
leads to their super-additive impact on postsynaptic neurons
(MacLeod et al. 1998; Salinas and Sejnowski 2001; Azouz and
Gray 2003; Laughlin and Sejnowski 2003; Fries 2009; Donner and
Siegel 2011). Second, the rhythmic synchronization of presy-
naptic spiking may enhance its downstream impact by enabling
its phase-alignment to corresponding postsynaptic rhythmic
excitability fluctuations (Fries 2005; Siegel et al. 2008; Gregoriou
et al. 2009; Bosman et al. 2012; Grothe et al. 2012). Our findings
support this notion by showing a multiplicative interaction,
that is, an enhanced gain of gamma-band responses among
visual features that drive this type of neuronal population
activity.

Notably, we did not observe an interaction of coherence
and contrast in their modulation of low-frequency activity
(<30 Hz). Although both features monotonically suppressed low-
frequency activity in a graded fashion, there was no interaction
between these effects. While ample evidence supports a
behavioral effect of visual low-frequency population activity
in particular in the alpha band (Thut et al. 2006; Siegel et al.
2008; Jensen and Mazaheri 2010), our results suggest that, in
contrast to gamma band, slow rhythmic population activity
may not exert a gain-like interaction between different visual
features.

An interesting question is whether the different stimulus fea-
tures modulated gamma-band activity preferentially in different
cortical areas. Contrast may be expected to preferentially mod-
ulate earlier processing stages with steep contrast–response
functions (e.g., V1), while motion coherence may preferentially
modulate later stages specialized in motion processing, such
as area MT+ (Becker et al. 2008; Birman and Gardner 2018).
Such differences may contribute to the multiplicative interac-
tion in average gamma activity across visual cortex through a
sequential gain enhancement across several processing stages.
Although we observed modulations of gamma-band activity
specifically in the contralateral visual cortex, due to the limited
spatial resolution, it is difficult to pinpoint the exact cortical
stages of gain modulation and interactions with MEG. Further
invasive studies are required to address this question.

In sum, we find that visual motion and contrast interact
multiplicatively in their drive of visual gamma-band activity.
Gamma-band activity may reflect a cortical gain mechanism
that combines sensory features and regulates the impact of
sensory processing onto downstream regions.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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